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We measure the transmission through asymmetric and reflection-symmetric chaotic microwave cavities in
dependence on the number of attached waveguides. Ferrite cylinders are placed inside the cavities to break
time-reversal symmetry. The phase-breaking properties of the ferrite and its range of applicability are discussed
in detail. We use the random matrix theory accounting for absorption effects to calculate the universal distri-
bution of transmission coefficientsT and their energy derivativesdT/d«. Using the absorption strength as a
fitting parameter, we find good agreement between universal transmission fluctuations predicted by the theory
and the experimental data.
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I. INTRODUCTION

There has been much theoretical interest in the universal
transmission fluctuations through ballistic chaotic systems
over recent yearsf1,2g. This activity is partially driven by
recent experiments on electronic conductance in open quan-
tum dots at very low temperatures. In the absence of inelastic
scattering, according to the Landauer formula, the conduc-
tance is proportional to the total transmission. Assuming that
the statistical transmission properties of chaotic scattering
systems are well described by the random-matrix theory
f3–5g, analytical results on the distribution of transmission
and reflection coefficients, as well as on other related quan-
tities, are readily obtainedf1g.

Remarkably, there are very few ballistic experimental sys-
tems that clearly show the universal transmissionsor conduc-
tanced fluctuations predicted by random-matrix theory. Uni-
versal conductance fluctuations in quantum dotsf6g are
already weak at temperatures of the order of the mean level
sresonanced spacing.sIn practice, for a typical semiconductor
quantum dots of submicrometer size, the temperature should
be smaller than 100 mK.d This is mainly due to the thermal
smearingf7g, but dephasing also plays a significant rolef8g.
The latter can be incorporated into the random-matrix mod-
eling by introducing additional phase-randomizing channels
f9g. Hence, theoretical clear-cut predictions of the transmis-
sion fluctuation dependence on the number of incoming and
outgoing channelsf10,11g are hardly observed. Despite these
difficulties, quantum dots provided the first clear fingerprint
of time-reversal symmetry breaking in the transmission dis-
tributions f12g. Theory and experiment showed an excellent
agreement once the dephasing time was accounted for as a
free parameter.

An alternative way to study universal transmission fluc-
tuations is provided by microwave techniques. Transmission
is directly measured in microwave experiments, and it is
easy to fabricate cavities of any shape. Hence, this approach
is ideally suited to verify theoretical predictions on transmis-
sion distributions. The first experiment of this type was per-
formed by Doronet al. f13g. This may be considered as an
experimental equivalent of the work by Jalabertet al. f14g on
conductance fluctuations in essentially the same system. A
study aiming at the channel number dependence and the in-
fluence of time-reversal symmetry breaking is our own work
f15g. For the sake of completeness we would like to mention
that there are two further microwave experiments concentrat-
ing on nonuniversal aspects of transmissionf16g.

Another quantity we shall examine in detail is the energy
derivative of the transmission,dT/d«. The motivation stems
from the study of the thermopower in electronic systems
which was shown to be proportional to the derivative of the
conductancesor transmissiond with respect to the Fermi en-
ergy ssee, e.g., Ref.f17g for details and further referencesd.
The theory predicts a qualitative difference between diffusive
and ballistic systems. Whereas for a disordered wire the dis-
tribution ofdT/d« is predicted to be Lorentzian, for a chaotic
quantum dot one expects a distribution with a cusp at«=0
f17,18g.

The study of universal transmission fluctuations using mi-
crowave experiments has its own characteristic limitations. It
is not trivial to break time-reversal symmetry in microwave
systems. In contrast, theoretical results are usually available
for systems with broken time-reversal symmetry only, since
for systems with time-reversal symmetry analytical progress
faces formidable technical problems. One way to break time-
reversal symmetry in microwave systems is to introduce fer-
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rites into the resonatorf19,20g. By applying an external mag-
netic field the electrons in the material perform a Larmor
precession, thus introducing a chirality into the system, the
precondition for breaking time-reversal symmetry. It will be-
come clear in what follows that this effect is unavoidably
accompanied by strong absorption.

Thus, in microwave experiments there is either no time-
reversal symmetry breaking, or strong absorption, or both.
Although, meanwhile, there are a number of theoretical
works that address absorption effects in microwave cavities
f21–24g, we will show that such analysis is not yet complete.

Last, but not least, the coupling between the cavity and
the waveguides is usually not perfectsor ideald in the experi-
ments. Nonideal contacts mean that part of the incoming flux
is promptly reflected at the entrance of the cavity and, hence,
it is not resonant.sThe same holds for quantum dots and
leads.d For the sake of simplicity most of the theoretical stud-
ies assume perfect coupling. Accounting for nonideal cou-
pling is not difficult f1,25,26g. The problem, however, is that
the quality of the contacts depend formally on the averageS
matrix. In other words, the phases of theSmatrix are needed
to quantitatively determine the coupling strength. This infor-
mation, in general, is not availablef27g. We discuss this issue
in our analysis.

This paper is organized as follows. In Sec. II we describe
the experimental setup and discuss how the addition of fer-
rite cylinders to the microwave cavities breaks time-reversal
symmetry. The phase-breaking features of the ferrite and its
absorption characteristics are discussed in the Appendix. In
Sec. III we present the key elements of the statistical theory
for transmission fluctuations in ballistic chaotic systems.
Section IV is devoted to the statistical analysis of our experi-
mental data. We vastly expand a previously presented analy-
sis of transmission fluctuations through asymmetric cavities
f15g. Here we analyze additional data on systems with reflec-
tion symmetry, expected to show different universal trans-
mission fluctuations from those without reflection symmetry
f28,29g. We also discuss the distribution of the derivative of
the transmission with respect to energy,dT/d«. Our conclu-
sions and an outlook on the open problems are presented in
Sec. V.

II. THE EXPERIMENT

Two different cavities were used in the experiment: an
asymmetric and a symmetric onef30g. Their shapes, shown
in Fig. 1, are inspired by the Sinai billiard, a paradigm of
classical chaotic motion. Wedgelike boundaries are used to
eliminate the bouncing ball modes in the cavity, but do not
prevent their presence in the cavity “arms.” Bouncing ball
modes are in correspondence with marginally stable classical
motion. They are known to cause nonuniversal spectral cor-
relations observed at large energysor frequencyd, unlikely to
be relevant for our study.

The height of the cavities ish=7.8 mm, i.e., both are
quasi-two-dimensional for frequenciesn below nmax=c/2h
=19.2 GHz. Two commercially available waveguides were
attached on both the entrance and the exit side. The cutoff
frequency for the first mode is atn1=c/2w=9.5 GHz where

w=15.8 mm is the width of the waveguides. Aboven2
=18.9 GHz a second mode becomes propagating. All mea-
surements have been performed in the frequency regime
where there is just a single propagating mode. The transmis-
sion coefficients were measured for all combinations of en-
trance and exit waveguides. Figure 2 shows a typical trans-
mission spectrum. By varying the lengthb of the resonator
100 different spectra were taken, which were superimposed
to improve statistics and to eliminate possible nongeneric
structures. A similar procedure has already been used in
quantum dot experimentsf8,12g.

To break time-reversal symmetry we make use of the pe-
culiar ferrite reflection properties. We place two hollow fer-
rite cylinders with radiusr =10 mm and thicknessd=1 mm
inside the cavities. We decided to use two such cylinders to
make sure that all microwaves transmitted by the cavity are
also scattered by the ferrite. This choice was very successful,
as will become evident from the results. Therefore we did
not vary systematically the number of ferrite inserts, which
would require a very large additional effort. The cylinder
magnetization is varied by applying an external magnetic
field. At an induction ofB=0.475 T the ferromagnetic reso-

FIG. 1. Sketch of the microwave cavities used in the experi-
ments.sad The asymmetric cavity hasa=237 mm andb can vary
from 375 to 425 mm.sbd The symmetric one has the samea, while
b ranges from 340 to 390 mm. The arrows indicate where the fer-
rite cylinders are placed. The entrance and exit waveguides are
denoted bys1,2d and s3,4d, respectively.

FIG. 2. Typical transmission spectrumsasymmetric cavityd.
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nance is centered at about 15.5 GHz. The electrons in the
ferrite perform a Larmor precession about the axis of the
magnetic field. At the Larmor frequency the ferromagnetic
resonance is excited giving rise to a strong microwave ab-
sorption. This is, of coarse, unwanted. Moving to frequencies
located at the tails of the ferromagnetic resonance, the mi-
crowaves are partially reflected and acquire a phase shift
depending on the sign of the propagation. The ferrite cylin-
der has thus a similar effect on the photons as an Aharonov-
Bohm flux line in a corresponding electron system. This cor-
respondence has already been explored to study persistent
currents using a microwave analogf31g.

This method to break time-reversal symmetry has an ob-
vious and unavoidable limitation: We have to move away
from the ferromagnetic resonance frequency to avoid strong
absorption, but we also have to stay close enough to observe
a significant phase-breaking effect. In the present experi-
ment, the optimal frequencies occur on a quite narrow inter-
val between 13.5 and 14.0 GHz, but still the typical line-
widths are about half an order of magnitude larger than in the
absence of the ferrite inserts. The Appendix gives a quanti-
tative description of the phase-breaking mechanism due to
the ferrite cylinders. Specific properties of the employed fer-
rite, which are useful for the understanding of the experimen-
tal data, are also discussed.

III. STATISTICAL THEORY

There are two standard statistical theories that describe
universal transmission fluctuations of ballistic systems. One
is the S-matrix information-theoretical theoryf32g, tailor-
made to calculate transmission distributions. The other
method, where the statisticalS matrix is obtained by model-
ing the scattering region by a stochastic Hamiltonianf2g, is
suited to the computation of energy and parametric transmis-
sion correlation functions. Both approaches were proven to
be strictly equivalent in certain limitsf4g. Complementing
this result, there is numerical evidence supporting that the
equivalence is generalf7g. Here we use both methods: Our
analytical resultssmainly for variancesd are obtained from
the information-theoretical approach, whereas the numerical
simulationssfor the full distributionsd are based on the sto-
chastic Hamiltonian one.

We model the transmission flux deficit due to absorption
by a set ofNf nontransmitting channels coupled to the cav-
ity. We considerN1 and N2 propagating modes at the en-
trance and the exit waveguides, respectively. The resulting
scattering process is described by the block structuredS ma-
trix

S= 1S11 S12 S1f

S21 S22 S2f

Sf1 Sf2 Sff

2 ; 1 S̃
S1f

S2f

Sf1 Sf2 Sff
2 . s1d

Here the set of indicesh1j,h2j label theN1,N2 propagating
modes at the waveguides, while the sethfj labels theNf

absorption channels. Transmission and reflection measure-
ments, necessarily taken at the waveguides, access directly

only the S̃-matrix elements.

Of particular experimental interest is the total transmis-
sion coefficient, namely,

T = o
aP2

bP1

Tab with Tab ; uS̃abu2. s2d

The absorption at eachNf channel can be quantifiedf33g by
Gf=1−ukSfflu2, where k¯l indicates an ensemble average
sdescribed belowd. A given f channel is weakly coupledsor
provides little absorptiond if Gf!1, whereas ifGf=1 the
cavity is perfectly coupled to the channelf and the corre-
sponding absorption is maximal. We take the limitsNf@1
smany possible absorption channelsd andGf!1, while keep-
ing NfGf=G constant. In this way we mimic the absorption
processes occurring over the entire cavity surface, expressing
their strength by a single parameterG f33g. This modeling,
used in the numerical simulations described below, is equiva-
lent to adding an imaginary part to the energy in theSmatrix
f34g, a standard way to account for a finiteQ value f13g.

We obtain the distributionsPbsTd by numerical simula-
tion. To that end, we employ the Hamiltonian approach to the
statisticalS matrix, namely,

Ss«d = 1 − 2piW†s« − H + ipWW†d−1W, s3d

whereH is the matrix of dimensionM 3M that describes the
resonant states.H is taken as a member of the Gaussian
orthogonalsunitaryd ensemble for thesbrokend time-reversal
symmetric case. The matrixW of dimensionM 3 sN1+N2

+Nfd contains the channel-resonance coupling matrix ele-
ments and« is the energy. ThisS-matrix parametrization is
entirely equivalent to theK-matrix formulation recently used
by Kogan and collaboratorsf21g. Since theH matrix is sta-
tistically invariant under orthogonalsb=1d or unitary sb
=2d transformations, the statistical properties ofS depend
only on the mean resonance spacingD, determined byH, and
the traces ofW†W. Maximizing the average transmission, or
assuming perfect coupling, is equivalent to setting trsW†Wd
=D /Îp f35g. The Hamiltonian approach can be used, in prin-
ciple, to study any numberN of open channels. We find it
convenient to express our results in terms ofE=« /D, i.e., all
energiesE are given in units of the mean resonance spacing
D. Later the experimental data will be scaled likewise. TheD
in the experiments has been estimated from the Weyl formula
for closed resonators, including the surface term.

Some words about our model are in order. One can de-
scribe the transmission in terms of trajectories scattered by
the cavity in a semiclassical picture. In this scenario, the
time-reversal symmetry is broken as the actions of the tra-
jectories acquire a sufficiently large additional time-reversal
symmetrysTRSd breaking contribution due to the ferrite cyl-
inders. For full TRS breaking, the phase shiftsschanges in
action, measured in units of"d should be distributed between
0 and 2p. For that matter it is not important whether this is
achieved continuously, as for an electron in a magnetic field,
or discontinuously, as in our case. Actually, our theoretical
modeling uses a different, but equivalent, picture. It assumes
a Hamiltonian with broken TRS. The magnitude of the TRS
breaking matrix elements depends on the resonance “wave
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function” amplitudes inside the ferrite, where a local time-
reversal symmetry breaking potential acts. Wave functions
corresponding to distinct states of a chaotic system are un-
correlated, providing a heuristic justification for the model.
Similar arguments apply to the absorption that occurs at the
walls of the resonator. Our model assumes that the different
absorption processes can, in principle, be labeled in terms of
its asymptotic radiation properties, defining the absorption
channels. Although of little use for a detailed microscopic
calculation, this description in terms of effective channels in
Hilbert space is very practical for our statistical analysis.

The numerical simulations are straightforward. For every
realization ofH we invert the propagator and computeSsEd
for energy values close to the center of the band,E=0, where
the level density is approximately constant. The dimension
of H is fixed asM =100 to 200, depending on the number of
channelsN. The choice ofM represents the compromise be-
tween having a wide energy window for the statisticsslarge
Md and fast computationssmall Md. For each value ofG we
obtain very good statistics with 104–105 realizations.

The full distribution of the transmission energy deriva-

tives, P̃bsdT/dEd, is obtained by numerical simulations. This
is a simple extension of the numerical procedure described
above. We computedS/dE directly from

dS

dE
= 2piW†sE − H + ipWW†d−2W, s4d

at the same time asSsEd is calculated.
We also analyze the fluctuations of the transmission coef-

ficient energy derivativedT/dE. We use the information-
theoretical approach to analytically compute moments of
dT/dE. For that purpose we expressdS/dE in terms of theS
matrix itself and a symmetrized form of the Wigner-Smith
time-delay matrixQE f36g, namely,

dS

dE
=

i

"
S1/2QES1/2. s5d

Thanks to the well known statistical properties ofQE matri-
ces, the computation ofksdTab/dEd2l is possiblef37g. We
note that Eq.s5d is strictly valid only when all channels are
ideally coupled to the scatterer. That is,Gc=1 wherec can be
either a waveguide or an absorbing channel. Hence,G
=NfGf is an integer number.

Note that the only parameters of the statistical theory are
the local mean resonance spacingD, the number of channels
N, and the absorption parameterG. In what follows we ana-
lyze the cases of asymmetric and symmetric cavities.

Asymmetric cavities

The presented formalism is readily suited for asymmetric
chaotic cavities, since to this point only stochasticity and
orthogonalstime-reversald or unitary sbroken time-reversald
symmetry are assumed. Additional symmetries require spe-
cial S-matrix parametrizations.

Figure 3 showsPsTd for theN=1 and 2 cases for various
values of the absorptionG. One can nicely observe how the
distributions for zero absorptionf10g evolve to an exponen-

tial sN=1d or a convolution of exponentialssN=2d as the
absorption strengthG increases. ForN=1 our simulations are
in excellent agreementswithin the statistical error and almost
indistinguishable in the scale of the graphd with the analyti-
cal expression obtained in Refs.f15,34g. The comparison
between our simulations and the analytical distributions for
the caseN=2 without absorption is also excellent. This con-
sistency test makes us confident in the numerical procedure.

For strong absorptionG@1, we find strong numerical evi-
dence that the distribution of individual channel-channel
transmission energy derivatives,dTab/dE, is exponential,
namely,

P̃bsdTab/dEd =
lb

2
expS− lbUdTab

dE
UD , s6d

wherelb depends onG, but not the channel indicesa andb.
Furthermore, in this regime we find that thedTab/dE for
different pairs of channels are uncorrelatedf37g. We con-
clude that either this distribution is insensitive to dynamical
channel-channel correlations, or such correlations are insig-
nificant in our billiards. Figure 4 presents results for typical
experimental values. For independentdTab/dE, the distribu-
tion of dT/dE for N=2 is easily obtained from Eq.s6d and
reads

P̃bsdT/dEd =
lb

96
expS− lbU dT

dE
UD 3 Slb

3U dT

dE
U3

+ 6lb
2U dT

dE
U2

+ 15lbU dT

dE
U + 15D . s7d

It remains to relatelb to G. This is done by computing
ksdTab/dEd2l. The latter can be analytically calculated using
the energy derivative of theS matrix, Eq.s5d, and readsf37g

FIG. 3. Transmission distributionPsTd for asymmetric chaotic
cavities withN=1 and 2 open channels, both cases withsB=0d and
without sBÞ0d time-reversal symmetry. We consider different ab-
sorption parametersG: 0 ssolidd, 0.25 sdashedd, 1 sdottedd, 2.5
sdash-dottedd, and 5sdash-dot-dottedd.
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KSdTab

dE
D2L =

8p2

a2sa + 1d2

a2 + a − 2 + 4s2 − bd
a2 + a − 2 − 4s2 − bd

, s8d

wherea=N1+N2+G. Recalling thatksdTab/dEd2l=2/lb
2 we

find lb as a function ofG. As pointed out below Eq.s5d, the
above formula is valid only for integer values ofG. Through-
out this study we interpolate our formulas for the variances
of dT/dE for noninteger values ofG.

In Fig. 4 we compare the approximationP̃bsdT/dEd,
wherelb is calculated as described above, with a direct nu-
merical simulation. The agreement is rather good.

Symmetric cavities

The influence of absorption on the transmission fluctua-
tions is even more pronounced in billiards with reflection
symmetry. In the absence of absorption the transmission dis-
tributions for reflection-symmetric cavities were already ana-
lytically computed. The most salient features are the follow-
ing. When time-reversal symmetry is preserved, the theory
predicts that the transmission distributionPsTd for reflection-
symmetric cavities remains invariant whenT is substituted
by 1−T f38g. On the other hand, for broken time-reversal
symmetry,PsTd coincides with the one for theasymmetric
case, but withT replaced by 1−T f29g.

To account for the reflection symmetry, it is sufficient to
consider theS matrix with the block structuref38g

S= F 1
2sS1 + S2d 1

2sS1 − S2d
1
2sS1 − S2d 1

2sS1 + S2d
G , s9d

where S1 and S2 are unitary sand symmetric forb=1d
NT/23NT/2 matrices withNT=2N+Nf. Both S1 and S2
have the structure given by Eq.s1d.

The transmission coefficient now reads

T =
1

4 o
a,b=1

N

ufS1gab − fS2gabu2 ; o
a,b=1

N

sab. s10d

We numerically generatePbsTd and P̃bsdT/dEd using the
Hamiltonian approach to theSmatrix, Eqs.s3d ands5d. Now
two statistically independent matricesS1 andS2 are required.
Here we chose the dimension ofH to be M =50. For each
value ofG we ran 105 realizations. We checked the quality of
our simulations with the analytical results avaliable forG
=0 and verified an excellent agreement within the statistical
error.

Figure 5 contrastsPbsTd obtained analytically for zero
absorptionf29g with our numerical simulations for different
values of G. Our analysis is restricted toN=1 and 2, as
before. We observe that with increasingG the fingerprints of
the reflection symmetry fade away, and the distributions be-
come quite similar to those of asymmetric cavities.

As in the asymmetric case, for the strong absorption re-
gime,G@1, our numerical simulations strongly suggest that
the distribution of the energy derivative of individual

channel-channel transmission coefficientsP̃bsdTab/dEd is
exponential. However, in distinction from the asymmetric
case, here the exponential law depends on the channels: The
reflection symmetryssee Fig. 1d makes the channelss1,4d
ands2,3d indistinguishable. Accordingly, we find that the “di-
agonal” coefficientsT14 and T23, denoted bysab

d , and the
“off-diagonal” onesT24 andT13, denoted bysab

o have differ-
ent variance. The second moment of the diagonaldsab

d /dE is
f37g

KSdsab
d

dE
D2L =

4p2

sa8 − 2da82sa8 + 1d2Fa8sa8 − 1ds7b − 6d
a8 + 3

+
sa82 + a8 + 2ds2 − bd

a8 + 1
G s11d

whereas the off diagonal is

FIG. 4. Distributions ofdT/dE for asymmetric cavities. Here
and in all subsequent figures the energy is expressed in units of the
mean level spacingD, namely,E=« /D. For N=1 the distributions
agree with Eq.s6d sdotted lined, while for N=2 they follow Eq.s7d
sdotted lined.

FIG. 5. Symmetric cavity transmission distributionsPsTd for the
one- and two-channel cases. ForB=0 we considerG=0, 0.5, 2, 2.5,
and 10, corresponding to the solid, dashed, dotted, dash-dotted, and
dash-dot-dotted lines, respectively. For the case of broken time-
reversal symmetry,BÞ0, the same symbols refer toG=0, 0.25, 1,
2.5, and 5.
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KSdsab
o

dE
D2L =

2p2sa82 + a8 + 2d
sa8 − 2da82sa8 + 1d2sa8 + 3d

3Fs2 − bd
a8 + 2

a8 + 1
+ 4sb − 1dG . s12d

Here,a8=bsN+G /2d.
For G@1, based on the numerical simulations, we assume

that P̃bsdsab/dEd is exponential and that for different pair of
channelsa and b the dsab/dE are uncorrelated. We then
equatemb

2 =2/ksdsab
d /dEd2l andnb

2 =2/ksdsab
o /dEd2l to write

P̃bsdT/dEd =
mb

2nb

16
FS 1

a1
+

1

a2
D2

expS−
nb

2
U dT

dE
UD

+ S 1

a1
−

1

a2
DS 1

a1
+

1

a2
+

1

mb

+ U dT

dE
UD

3expS− mbU dT

dE
UDG , s13d

wherea1=mb+nb /2, a2=mb−nb /2. Figure 6 compares the

approximationP̃bsdT/dEd with our numerical simulations.
We chose parameters realistic to our experiment. The agree-
ment is quite good. Deviations between the approximation
s13d and the numerical simulations are of order 1/G.

IV. STATISTICAL ANALYSIS OF THE EXPERIMENTAL
RESULTS

The statistical analysis of our experiment is based on two
central hypotheses. First, as standard, we assume that the
transmission fluctuations of a chaotic system are the same as
those predicted by random-matrix theorysRMTd f4g. Second,
we employ an ergodic hypothesis to justify that ensemble
averages are equivalent to running averages, that is, averages
over the energysfrequencyd and/or shape parameters. This
requires RMT to be ergodicf42,43g, which was recently

shown f44g. A recent experimental microwave studyf45g
claims to circumvent the ergodic hypothesis by placing a
perturbationsabsorberd at different cavity positions, hence
generating different realizations of the scattering system.
However, the position of the perturbation can be regarded as
a running variable. This means that Ref.f45g implicitly as-
sumes that there are no spectral correlations as the absorber
is moved. It was shown in Ref.f46g that such correlations
exist as long as the range of the perturbation potential is
small compared to the wavelength. In case this assumption is
too strong, in practice, ergodicity justifies the statistical
analysis either way.

The experimental transmission coefficients were obtained
by superimposing 100 different spectra measured for billiard
lengthsb ssee Fig. 1d. In the studied frequency regime there
is only a single propagating mode in each of the waveguides.
Hence, with every waveguide we associate a single scatter-
ing channel. For theN=1 case all measurements for the dif-
ferent combinations of entrance and exit waveguides were
superimposed. The transmission for theN=2 case was ob-
tained by combining the results from allN=1 measurements,
namely,T=T13+T14+T23+T24.

Figure 7 shows the mean transmissionsN=2 cased with
and without applied external magnetic field. When related to
experimental quantities,k¯l indicate running averages. The
strong absorption due to the Larmor resonance is clearly
seen. In the Appendix we discuss why the phase-breaking
effect is expected to be best observed in the tails of the
Larmor resonance. Figure 8 illustrates this very nicely. It
shows the scaled transmission distributionPsT/ kTld for the
asymmetric billiard in three different frequency windows
both with and without applied external magnetic field. It is
only in the frequency interval from 13.55 to 13.85 GHz that
PsT/ kTld changes with magnetic field. We stress that this is
different from just an absorption effect. In the frequency
window around 14.45 GHz, where the absorption is stron-
gest, the normalized distributions with and without magnetic
field are basically the samesthe only difference is in the
mean transmission. We identify the change inPsT/ kTld with
the expected phase-breaking effect and assume that the ap-
plied magnetic field is sufficient for the ferrite cylinders to

FIG. 6. Transmission energy derivative distributions for the
symmetric chaotic cavities. The points represent the results of the
simulations forG=18 s22d for B=0 sBÞ0d for N=1; G=14 s18d for
B=0 sBÞ0d for N=2. The dotted lines give the approximationss6d
and s13d. For N=1 we present the diagonal case.

FIG. 7. Mean transmissionkTl for theN=2 case forB=0 ssolid
lined and 0.470 Tsdotted lined. The Larmor resonance frequency is
vR=2p314.86 GHz.
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fully break time-reversal symmetry. Similar observations
were made for the symmetric billiard.

Before we present our statistical analysis, it remains to
discuss the coupling of the waveguides to the cavity. For that
purpose we measured the transmission through two
waveguides facing each other directly. In the whole applied
frequency range the total transmission was unity, with an
experimental uncertainty below 5%, showing that the an-
tenna coupling is perfect. There are, however, reflections of
about 10% in amplitude from the open ends of the
waveguides, where they are attached to the billiard. Small
deviations from ideal coupling are also consistent, for the
frequencies we use, with Ref.f27g. Since the absorption is
strong in the present experiment, and an imperfect coupling
can be compensated for to a large extent by a rescaled ab-
sorption constant, we decided not to explicitly account for
coupling corrections. In summary, throughout the forthcom-
ing analysis we assume perfect coupling between the cavity
and the waveguides.

For the sake of clarity, we present the statistical analysis
of the asymmetric and the symmetric cavities separately.

Asymmetric cavity distributions

Figure 9 compares the experimental transmission distribu-
tions in the “phase-breaking” frequency window with the
statistical theory. The absorption parameterG ssee Sec. IIId
was adjusted to give the best fit of the theoreticalkTl to the
experiment. Note that in the frequency scale where the uni-
versal transmission fluctuations occur the mean transmission
is a smooth function. It also does not show noticeable
changes within the “phase-breaking” windowssee Fig. 7d.
The agreement between experiment and theory forPsTd is
excellent, except forN=2 with BÞ0 f47g.

We work with a single asymmetric cavity, but use differ-
ent G values forN=1 and 2. The reason is simple: ForN
=2 we consider the contributions from all antennas to the
transmission, whereas forN=1 two antennas act as addi-
tional absorption channels. This gives rise to a simple rela-
tion, namely,GsN=1d=GsN=2d+2.

To obtain the experimental distribution of the transmis-

sion energy derivativeP̃sdT/dEd we introduce E=n /D,
which measures the frequencyn in units of the mean reso-
nance spacingD given by the Weyl formula. Figure 10
shows a comparison between theoretical and experimental

results forP̃sdT/dEd. Note that we take the sameG as for
PsTd. The signatures of the channel number, and the influ-
ence of time-reversal symmetry breaking are clearly seen.
We checked that the increase in absorption when switching
on the magnetic field, without switching to the unitary en-
semble as well, is not sufficient to reproduce the data. Inac-
curacies in the assessment of the mean level resonance from

FIG. 8. Transmission distribution for theN=1 sleftd and 2
srightd channel cases for three different frequency windows of width
dn=0.3 GHz centered atn0 sindicated in the figured. The histo-
grams correspond toB=0 ssolid lined and 0.470 Tsdotted lined.

FIG. 9. Transmission distributions for the asymmetric cavity.
The histograms correspond to data taken within the indicated fre-
quency window. The dotted lines stand for the random-matrix simu-
lations, withG as a fitting parameter.

FIG. 10. Distribution of the energy derivative of the transmis-

sion for the asymmetric cavity,P̃sdT/dEd. The dotted lines corre-
spond to the theoretical distributions.
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the Weyl formula provide a possible explanation for the
slight disagreement between theory and experiment. The
Weyl formula does not account for the standing waves in the
ferrite cylinders and, thus, overestimates the mean resonance
spacing. This is consistent with Fig. 10.

The joint distribution ofT anddT/dE was studied in Ref.
f18g for N=1 andG=0. Remarkably, it was found that albeit
T and dT/dE are correlated, the rescaled quantity
sdT/dEdresc=sdT/dEd /ÎTs1−Td and T are not. We checked
if this finding holds in our experiment, despite absorption.
Figure 11 shows the “normalized” joint probability

FST,
dT

dE
D ; 5 PsT,dT/dEd

PsTdP̃sdT/dEd
for PsTdP̃sdT/dEd Þ 0,

0 for PsTdP̃sdT/dEd = 0

h

s14d

in a three-dimensional representation forN=1 and B=0.
Clear correlations are observed. In contrast, Fig. 12 shows
FfT,sdT/dEdrescg. Here the distribution becomes flat, except
for a couple of bins with few counts. Unfortunately we do
not have enough statistics to make a more reliable determi-
nation of the joint distributionF. A similar result, not shown
here, holds for theBÞ0 case.

Symmetric cavity distributions

We switch now to the statistical analysis of the symmetric
cavity transmission fluctuations.

Figure 13 shows the experimental showsPsTd for trans-
missions within 13.55ønø13.85 GHz, where the phase-
breaking effect is expected to be strongest. As before, the
absorption parameterG is the best fit of the theory to the
experiment. Here, for all studied cases a nearly perfect agree-
ment is found. NowGsN=1d=GsN=2d+4. This is due the reflec-
tion symmetry.

Figure 14 shows the experimental distributionsPsdT/dEd
for the symmetric case. The signatures of the channel num-
ber and the influence of breaking time-reversal symmetry are
clearly seen. For all cases of the symmetric billiard the the-
oretical curves are plotted as well. We observe that the ex-
perimental distributions verify the overall trends of the the-
oretical predictions. In particular, the characteristic cusp at
E=0 is nicely reproduced forN=1. Similar to the asymmet-
ric case, the agreement between experiment and theory is not
as good as for the transmission distribution.

FIG. 11. Normalized joint distribution FsT,dT/dEd
=PsT,dT/dEd / fPsTdP̃sdT/dEdg for the asymmetric cavity forN
=1, B=0. A similar result holds forBÞ0.

FIG. 12. Same as in Fig. 11, but withdT/dE replaced by
sdT/dEdresc=sdT/dEd /ÎTs1−Td.

FIG. 13. Transmission distributionsPsTd for the symmetric bil-
liard. Histograms stand for the data taken at the indicated frequency
interval, whereas the dotted lines correspond to the simulations. The
absorptionG is a fitting parameter.

FIG. 14. Distribution of the energy derivative of the transmis-
sion for the symmetric cavity. The dotted lines corresponds to the
theoretical distributions obtained from random-matrix theory.

SCHANZE et al. PHYSICAL REVIEW E 71, 016223s2005d

016223-8



In analogy to the case of asymmetric cavities, we inves-
tigate if the rescaled quantity sdT/dEdresc

=sdT/dEd /ÎTs1−Td is independent ofT. Figure 15 shows
the normalized joint probabilityFsT,dT/dEd, defined as in
Eq. s14d, in a three-dimensional representation forN=1 and
B=0. A clear correlation is manifest. For comparison, Fig. 16
shows the corresponding histogram forF(T,sdT/dEdresc).
The scaledF becomes flat, except for a few bins with low
counting. This indicates that the rescaled joint probability
distributionF is very well described as a product ofPsTd and

P̃fsdT/dEdrescg. We conclude that if there are correlations
betweenT andsdT/dEdresc, they are very small. We observe
similar results, not shown here, for theBÞ0 case.

V. CONCLUSIONS

This work shows that microwaves are ideally suited to
experimentally verify the theory of universal transmission
fluctuations through chaotic cavities. The results presented in
the present paper would have been hardly accessible by any
other method.

We observe a nice overall agreement between our experi-
mental data and the random-matrix results. However, the
comparison between theory and microwave experiment is
limited by the following issues.

In experiments, the coupling between waveguides and the
cavity is usually not ideal, whereas in most theoretical works

ideal coupling is assumed. In the frequency range studied
here, the working hypothesis of nearly perfect coupling is
supported by Ref.f27g. In general, however, it turns out that
without measuring theS matrix swith phasesd it is hard to
disentangle direct reflection at the cavity entrancesimperfect
couplingd from absorption. From the experimental side, it
would be desirable to have a better handle on absorption.

Microwave systems are usually time-reversal invariant,
and as we have seen it is not trivial to break this symmetry.
At the same time we increase the magnetic field, turning on
the phase-breaking mechanism, absorption also increases.
Unfortunately, both effects are inextricable. This is why it is
beyond our present experimental capability to quantitatively
investigate the transmission fluctuations along the crossover
regime between preserved and broken time-reversal invari-
ance. Actually, to compare theory with experimental results
we assume that the transmission data atB=0.470 mT and
13.55,n,13.85 GHz are far beyond the crossover regime.

We hope that the present work will trigger additional the-
oretical effort in the mentioned directions.

ACKNOWLEDGMENTS

C. W. J. Beenakker is thanked for numerous discussions at
different stages of this work. We also thank P. A. Mello for
suggesting the symmetric cavities measurements. The ex-
periments were supported by the Deutsche Forschungsge-
meinschaft. M.M.M. was supported by CLAF-CNPqsBrazild
and C.H.L. by CNPqsBrazild.

APPENDIX: PHASE-BREAKING PROPERTIES
OF THE FERRITE

This Appendix is devoted to the discussion of the ferro-
magnetic resonance and the phase-breaking mechanism. For
that purpose we first quickly present some elements of the
well-established theory of microwave ferrites; see for in-
stance, Ref.f39g.

For the sake of simplicity, we first restrict ourselves to the
situation of an incoming plane wave reflected by the surface
of an semi-infinite ferrite medium. We assume that incoming,
reflected, and refracted waves propagate in thexy plane and
are polarized along thez direction, and that there is an ex-
ternally applied static magnetic field in thez direction, as
shown in Fig. 17. We ask for the phase acquired due to the

FIG. 15. Normalized joint distribution FsT,dT/dEd
=PsT,dT/dEd / fPsTdP̃sdT/dEdg for the symmetric cavity forN=1,
B=0. A similar result holds forBÞ0.

FIG. 16. Same as in Fig. 15, but withdT/dE replaced by
sdT/dEdresc=sdT/dEd /ÎTs1−Td.

FIG. 17. Plane wave reflected by the surface of a ferrite slab.
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reflection on the ferrite.
To answer this question we need to solve Maxwell’s equa-

tions. For this geometry and single-frequency electromag-
netic fields, like our microwaves, this is a simple task. The
ferrite properties come into play via the constitutive relations
D=e0eE and B=m0mH; more specifically through the per-
meability m, which is a tensor with the form

m = 1 +x = 11 + xr − ixi ·

ixi 1 + xr ·

· · 1 + x0
2 sA1d

with

xr =
vLvM

vL
2 − v̂2, xi = −

v̂vM

vL
2 − v̂2, v̂ = v + il. sA2d

HerevL=−gH0 andvM =gM0 are the precession angular fre-
quencies about the external fieldH0 and the equilibrium
magnetizationM0, respectively.m0 is the static susceptibility.
Herel is the rate that characterizes the decay of the magne-
tization toward its thermal equilibrium due to spin-spin and
spin-lattice interactions within the ferrite. More details can
be found, for instance, in Chap. 2.2.3 of Ref.f40g.

We solve the proposed problem using for the electric field
the ansatzEsrd=Esrdez, where

Esrd = HETeikT·r , x , 0,

EIe
ik I·r + EReikR·r , x . 0,

J sA3d

with k I =k0s−cosa ,sina ,0d, kR=k0scosa ,sina ,0d, kT

=ks−cosb ,sinb ,0d ssee Fig. 17d.
The derivation of the amplitudesEI, ER, andET is similar

to that of Fresnel’s formulassee, for instance,f41gd. Since an
explicit calculation for ferrites is performed in Ref.f31g,
only the results will be given. Using the continuity ofEi, D',
B', andH i on the boundary, one writes

ET = EI + ER and k sinb = k0 sina sA4d

which is just Snell’s law. For the relative amplitude of the
reflected part we obtain

ER

EI
=

sn2/edcosa + id sina − În2 − sin2 a

sn2/edcosa − id sina + În2 − sin2 a
sA5d

where

n2 =
svL + vMd2 − v̂2

vLsvL + vMd − v̂2 sA6d

and

d =
xi

1 + xr
= −

v̂vM

vLsvL + vMd − v̂2 . sA7d

Note that there is a term depending on the sign ofa, i.e., on
the direction of the incident wave. This term is responsible
for the phase-breaking effect.

The above formulas have to be modified when dealing
with a ferrite of finite width. For a slab of thicknessl and
a=0 we have

ET

EI
=

4e/n

s1 + e/nd2eiks1−ndl − s1 − e/nd2eiks1+ndl sA8d

and

ER

EI
= − 2i sinknl

1 − e2/n2

s1 + e/nd2eıks1−ndl − s1 − e/nd2eiks1+ndl .

sA9d

In contrast to Eq.sA5d, ET is no longer the amplitude of the
transmitted wave propagating inside the ferrite. HereET is
the amplitude of the wave that crossed the ferrite slab and
emerged at the other side. The explicit formula foraÞ0 is
lengthy and is not presented here.

The phase breaking becomes clearly manifest by writing
Eq. sA9d as

ER

EI
= UER

EI
Ueifreflsad sA10d

wherefreflsad is the phase acquired due to reflection. Figure
18 shows the modulus of transmissionuET/EIu and reflection
uER/EIu as well as the phase shift for different incidence
angles andl =1 mm, the thickness of our ferrite cylinders.
The curves are calculated using the ferrite parametersssee
caption of Fig. 18d given by the supplier. We find a resonance
angular frequency ofvR=ÎvLsvL+vMd=2p314.86 GHz.
This resonance corresponds to the dominant structure ob-

FIG. 18. Reflection, transmission, and phase shift for a ferrite
slab sM0=130 mT, e=15, l=0.1 GHzd of thicknessl =1 mm at
B0=m0H0=470 mT for different incidence anglesa.

SCHANZE et al. PHYSICAL REVIEW E 71, 016223s2005d

016223-10



served in Fig. 18. The additional substructures are due to
standing waves inside the ferrite.

To illustrate the phase-breaking effect of the ferrite, in
Fig. 19 we show the phase differenceDf=freflsad
−frefls−ad between the incoming and the time-reversed
wave. We see that the effect is maximal at the resonance
frequency, and vanishes as one moves off resonance. Unfor-
tunately, the absorption is maximal at the resonance too.
These are the quantitative observations in support of the dis-
cussion presented in Sec. II.

Finally, to experimentally check the properties of the fer-
rites, we place a small sheet of the material between two
waveguides facing each other. Two different thicknessesl
=1 and 2 mm were used. Figure 20 shows the measured
reflection uER/EIu as a function ofn. The small oscillations
superimposing the dominant resonance structures correspond
to standing waves within the waveguide and are an artifact of
the experiment. Comparing the experimental results with the
calculation shown in Fig. 18, we notice that the assumption
of a single homogeneous internal magnetization is not in
accordance with the measurement. The dashed line is ob-
tained by superimposing the theoretical results for two dif-
ferent values of the magnetization. The overall behavior of
the resonance structures becomes then in qualitative agree-
ment with the data. The different magnetizations are due to
the domain structure of the ferrite. There is a critical magni-
tude of external magnetic field below which the magnetiza-

tion is incomplete and each Weiss domain has a different
magnetization. It is desirable to eliminate this feature by op-
erating at larger magnetic fields. This is unfortunately not
possible sincesid a larger magnetic field implies a larger
Larmor frequency;sbd our goal to keep the equivalence with
quantum mechanics limits our study to frequencies where the
resonator is quasi-two-dimensional. In this respect the ap-
plied field we use is about the highest possible.

f1g C. W. J. Beenakker, Rev. Mod. Phys.69, 731 s1997d.
f2g T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller, Phys.

Rep. 299, 189 s1998d.
f3g R. Blümel and U. Smilansky, Phys. Rev. Lett.64, 241s1990d.
f4g C. H. Lewenkopf and H. A. Weidenmüller, Ann. Phys.sN.Y.d

212, 53 s1991d.
f5g E. Doron and U. Smilansky, Nucl. Phys. A545, 455cs1992d.
f6g C. M. Marcus, A. J. Rimberg, R. M. Westervelt, P. F. Hopkins,

and A. C. Gossard, Phys. Rev. Lett.69, 506 s1992d.
f7g E. R. P. Alves and C. H. Lewenkopf, Phys. Rev. Lett.88,

256805s2002d; C. H. Lewenkopf, Chaos, Solitons Fractals16,
449 s2003d.

f8g A. G. Huibers, M. Switkes, C. M. Marcus, K. Campman, and
A. C. Gossard, Phys. Rev. Lett.81, 200 s1998d.

f9g H. U. Baranger and P. A. Mello, Phys. Rev. B51, R4703
s1995d.

f10g H. U. Baranger and P. A. Mello, Phys. Rev. Lett.73, 142
s1994d.

f11g R. A. Jalabert, J.-L. Pichard, and C. W. J. Beenakker, Euro-
phys. Lett. 27, 255 s1994d.

FIG. 19. DifferenceDf=freflsad−frefls−ad of phase shifts ob-
served between an incoming wave and its time-reversed equivalent.

FIG. 20. Experimental reflection for a ferrite slab of thickness
l =1 sad and 2 mmsbd. The dashed lines have been calculated by
superimposing the results for two different internal magnetizations
M0=110 and 190 mT. The broad minimum observed forl =2 mm
close to 13 GHz is due to a standing wave within the ferrite. For
l =1 mm the corresponding minimum is at 15 GHz and overlapping
with the ferromagnetic resonance.

UNIVERSAL TRANSPORT PROPERTIES OF OPEN… PHYSICAL REVIEW E 71, 016223s2005d

016223-11



f12g A. G. Huibers, S. R. Patel, C. M. Marcus, P. W. Brouwer, C. I.
Duruöz, and J. S. Harris, Jr., Phys. Rev. Lett.81, 1917s1998d.

f13g E. Doron, U. Smilansky, and A. Frenkel, Phys. Rev. Lett.65,
3072 s1990d.

f14g R. A. Jalabert, H. U. Baranger, and A. D. Stone, Phys. Rev.
Lett. 65, 2442s1990d.

f15g H. Schanze, E. R. P. Alves, C. H. Lewenkopf, and H.-J. Stöck-
mann, Phys. Rev. E64, 065201sRd s2001d.

f16g Y.-H. Kim, M. Barth, H.-J. Stöckmann, and J. P. Bird, Phys.
Rev. B 65, 165317s2002d; Y.-H. Kim, M. Barth, U. Kuhl,
H.-J. Stöckmann, and J. P. Bird,ibid. 68, 045315s2003d.

f17g S. A. van Langen, P. Silvestrov, and C. W. J. Beenakker, Stud.
Appl. Math. 23, 691 s1998d.

f18g P. W. Brouwer, S. A. van Langen, K. M. Frahm, M. Büttiker,
and C. W. J. Beenakker, Phys. Rev. Lett.79, 913 s1997d.

f19g P. So, S. M. Anlage, E. Ott, and R. N. Oerter, Phys. Rev. Lett.
74, 2662s1995d.

f20g U. Stoffregen, J. Stein, H.-J. Stöckmann, M. Kuś, and F.
Haake, Phys. Rev. Lett.74, 2666s1995d.

f21g E. Kogan, P. A. Mello, and HeLiqun, Phys. Rev. E61, R17
s2000d.

f22g C. W. J. Beenakker and P. W. Brouwer, Physica E
sAmsterdamd 9, 463 s2001d.

f23g D. V. Savin and H.-J. Sommers, Phys. Rev. E68, 036211
s2003d.

f24g D. V. Savin and H.-J. Sommers, Phys. Rev. E69, 035201sRd
s2004d.

f25g P. W. Brouwer, Phys. Rev. B51, 16878s1995d.
f26g D. V. Savin, Y. V. Fyodorov, and H.-J. Sommers, Phys. Rev. E

63, 035202sRd s2001d.
f27g R. A. Méndez-Sánchez, U. Kuhl, M. Barth, C. H. Lewenkopf,

and H. J. Stöckmann, Phys. Rev. Lett.91, 174102s2003d.
f28g M. Martínez and P. A. Mello, Phys. Rev. E63, 016205s2000d.
f29g H. U. Baranger and P. A. Mello, Phys. Rev. B54, R14297

s1996d.
f30g Reflection symmetry is limited by the workshop precision. We

estimate it to be better than 0.1 mm, which is much smaller

than the typical wavelengths of the experimentscentimetersd.
Uncertainties in the ferrite positions should be of the same
order. We also neglect inhomogeneities in the ferrite.

f31g M. Vraničar, M. Barth, G. Veble, M. Robnik, and H.-J. Stöck-
mann, J. Phys. A35, 4929s2002d.

f32g P. A. Mello and H. U. Baranger, Waves Random Media9, 105
s1999d.

f33g C. H. Lewenkopf, A. Müller, and E. Doron, Phys. Rev. A45,
2635 s1992d.

f34g P. W. Brouwer and C. W. J. Beenakker, Phys. Rev. B55, 4695
s1997d.

f35g J. J. M. Verbaarschot, H. A. Weidenmüller, and M. R. Zirn-
bauer, Phys. Rep.129, 367 s1985d.

f36g P. W. Brouwer, K. M. Frahm, and C. W. J. Beenakker, Phys.
Rev. Lett. 78, 4737s1997d.

f37g M. Martínez-Mares, e-print cond-mat/0410746.
f38g V. A. Gopar, M. Martínez, P. A. Mello, and H. U. Baranger, J.

Phys. A 29, 881 s1996d.
f39g B. Lax and K. Button,Microwave Ferrites and Ferrimagnetics

sMcGraw-Hill, New York, 1962d.
f40g H.-J. Stöckmann,Quantum Chaos—An IntroductionsCam-

bridge University Press, Cambridge, U.K., 1999d.
f41g J. D. Jackson,Classical ElectrodynamicssWiley, New York,

1962d.
f42g J. B. French, P. A. Mello, and A. Pandey, Phys. Lett.80B, 17

s1978d.
f43g A. Pandey, Ann. Phys.sN.Y.d 119, 170 s1979d.
f44g Z. Pluhař and H. A. Weidenmüller, Phys. Rev. Lett.84, 2833

s2000d.
f45g S. Hemmady, X. Zheng, E. Ott, T. M. Antonsen, and S. M.

Anlage, e-print cond-mat/0403225.
f46g M. Barth, U. Kuhl, and H.-J. Stöckmann, Phys. Rev. Lett.82,

2026 s1999d.
f47g In our previous publicationf15g the agreement between theory

and experiment for theB=0.475 T andN=2 case was better.
This is due to a calibration problem, corrected in our current
data analysis.

SCHANZE et al. PHYSICAL REVIEW E 71, 016223s2005d

016223-12


