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We measure the transmission through asymmetric and reflection-symmetric chaotic microwave cavities in
dependence on the number of attached waveguides. Ferrite cylinders are placed inside the cavities to break
time-reversal symmetry. The phase-breaking properties of the ferrite and its range of applicability are discussed
in detail. We use the random matrix theory accounting for absorption effects to calculate the universal distri-
bution of transmission coefficien® and their energy derivativedT/de. Using the absorption strength as a
fitting parameter, we find good agreement between universal transmission fluctuations predicted by the theory
and the experimental data.
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[. INTRODUCTION An alternative way to study universal transmission fluc-
tuations is provided by microwave techniques. Transmission

There has been much theoretical interest in the universas directly measured in microwave experiments, and it is
transmission fluctuations through ballistic chaotic system&asy to fabricate cavities of any shape. Hence, this approach
over recent yearfl,2]. This activity is partially driven by is ideally suited to verify theoretical predictions on transmis-
recent experiments on electronic conductance in open quasion distributions. The first experiment of this type was per-
tum dots at very low temperatures. In the absence of inelastiformed by Doronet al. [13]. This may be considered as an
scattering, according to the Landauer formula, the conducexperimental equivalent of the work by Jalabetral.[14] on
tance is proportional to the total transmission. Assuming thatonductance fluctuations in essentially the same system. A
the statistical transmission properties of chaotic scatteringtudy aiming at the channel number dependence and the in-
systems are well described by the random-matrix theorfluence of time-reversal symmetry breaking is our own work
[3-5], analytical results on the distribution of transmission[15]. For the sake of completeness we would like to mention
and reflection coefficients, as well as on other related quarthat there are two further microwave experiments concentrat-
tities, are readily obtainefd]. ing on nonuniversal aspects of transmisdihf].

Remarkably, there are very few ballistic experimental sys- Another quantity we shall examine in detail is the energy
tems that clearly show the universal transmisgmmconduc-  derivative of the transmission,T/de. The motivation stems
tance fluctuations predicted by random-matrix theory. Uni- from the study of the thermopower in electronic systems
versal conductance fluctuations in quantum dg$ are  which was shown to be proportional to the derivative of the
already weak at temperatures of the order of the mean levelonductanceor transmissionwith respect to the Fermi en-
(resonancespacing (In practice, for a typical semiconductor ergy (see, e.g., Ref.17] for details and further referendes
quantum dots of submicrometer size, the temperature shoulthe theory predicts a qualitative difference between diffusive
be smaller than 100 mKThis is mainly due to the thermal and ballistic systems. Whereas for a disordered wire the dis-
smearing 7], but dephasing also plays a significant ri8¢  tribution of dT/de is predicted to be Lorentzian, for a chaotic
The latter can be incorporated into the random-matrix modgquantum dot one expects a distribution with a cuspg=a0
eling by introducing additional phase-randomizing channel$17,18.

[9]. Hence, theoretical clear-cut predictions of the transmis- The study of universal transmission fluctuations using mi-
sion fluctuation dependence on the number of incoming androwave experiments has its own characteristic limitations. It
outgoing channelgl0,11] are hardly observed. Despite theseis not trivial to break time-reversal symmetry in microwave
difficulties, quantum dots provided the first clear fingerprintsystems. In contrast, theoretical results are usually available
of time-reversal symmetry breaking in the transmission disfor systems with broken time-reversal symmetry only, since
tributions[12]. Theory and experiment showed an excellentfor systems with time-reversal symmetry analytical progress
agreement once the dephasing time was accounted for asfaces formidable technical problems. One way to break time-
free parameter. reversal symmetry in microwave systems is to introduce fer-
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rites into the resonatdf9,20. By applying an external mag-
netic field the electrons in the material perform a Larmor |
precession, thus introducing a chirality into the system, the
precondition for breaking time-reversal symmetry. It will be-

come clear in what follows that this effect is unavoidably

accompanied by strong absorption.

Thus, in microwave experiments there is either no time-
reversal symmetry breaking, or strong absorption, or both.
Although, meanwhile, there are a number of theoretical b i . b
works that address absorption effects in microwave cavities
[21-24, we will show that such analysis is not yet complete.

Last, but not least, the coupling between the cavity and
the waveguides is usually not perféot idea) in the experi-
ments. Nonideal contacts mean that part of the incoming flux @) (b)
is promptly reflected at the entrance of the cavity and, hence,
it is not resonant(The same holds for quantum dots and . )

ments.(a) The asymmetric cavity hag=237 mm andb can vary

leads) For the sake of simplicity most of the theoretical stud- : X
ies assume perfect coupling. Accounting for nonideal coulclrom 375 to 425 mm(b) The symmetric one has the samewhile

N . - b ranges from 340 to 390 mm. The arrows indicate where the fer-
pling is rjot difficult[1,25,24. The problem, however, is that rite cylinders are placed. The entrance and exit waveguides are
the quality of the contacts depend formally on the aveiage .

! ; denoted by(1,2) and(3,4), respectively.
matrix. In other words, the phases of tBenatrix are needed

to quantitatively determine the coupling strength. This infor-;,,— 15 8 mm is the width of the waveguides. Abovg
mation, in general, is not availabl27]. We discuss this issue =18.9 GHz a second mode becomes propagating. All mea-

n-our analy3|§. . . surements have been performed in the frequency regime
This paper is organized as follows. In Sec. Il we describgpare there is just a single propagating mode. The transmis-
the experimental setup and discuss how the addition of fersjqn coefficients were measured for all combinations of en-
rite cylinders to the microwave cavities breaks time-reversaj.,nce and exit waveguides. Figure 2 shows a typical trans-
symmetry. The phase-breaking features of the ferrite and it?nission spectrum. By varying the lengthof the resonator

absorption characteristics are discussed in the .Appendix. IR00 different spectra were taken, which were superimposed
Sec. lll we present the key elements of the statistical theory, improve statistics and to eliminate possible nongeneric

for transmission fluctuations in ballistic chaotic systems.qictures. A similar procedure has already been used in

Section IV is devoted to the statistical analysis of our eXPeriguantum dot experiments, 12].

mental data. We vastly expand a previously presented analy- 14 preak time-reversal symmetry we make use of the pe-

sis of transmission fluctuations through asymmetric cavitieg, jiar ferrite reflection properties. We place two hollow fer-
[15]. Here we analyze additional data on systems with reflecg;;o cylinders with radius =10 mm and thicknesé=1 mm
tion symmetry, expected to show different universal trans-

o . 1 , inside the cavities. We decided to use two such cylinders to
mission fluctuations from those without reflection symmetry

_ oo ) make sure that all microwaves transmitted by the cavity are
[28,29. We also discuss the distribution of the derivative of 515, scattered by the ferrite. This choice was very successful,
the transmission with respect to enerdy,/de. Our conclu-

| as will become evident from the results. Therefore we did
sions and an outlook on the open problems are presented by \ary systematically the number of ferrite inserts, which
Sec. V. would require a very large additional effort. The cylinder
magnetization is varied by applying an external magnetic
Il. THE EXPERIMENT field. At an induction ofB=0.475 T the ferromagnetic reso-

Ferrite
cylinders

P A
4 3 1

|
2

FIG. 1. Sketch of the microwave cavities used in the experi-

Two different cavities were used in the experiment: an 0.15
asymmetric and a symmetric of&0]. Their shapes, shown
in Fig. 1, are inspired by the Sinai billiard, a paradigm of
classical chaotic motion. Wedgelike boundaries are used to
eliminate the bouncing ball modes in the cavity, but do not
prevent their presence in the cavity “arms.” Bouncing ball
modes are in correspondence with marginally stable classical
motion. They are known to cause nonuniversal spectral cor-
relations observed at large ener@y frequency, unlikely to
be relevant for our study.

The height of the cavities i$=7.8 mm, i.e., both are 0.00
quasi-two-dimensional for frequenciesbelow vp,,=c/2h 11 12 13 14 15 186 17 18
=19.2 GHz. Two commercially available waveguides were Frequency v [GHz]
attached on both the entrance and the exit side. The cutoff
frequency for the first mode is at=c/2w=9.5 GHz where FIG. 2. Typical transmission spectru@symmetric cavity.
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nance is centered at about 15.5 GHz. The electrons in the Of particular experimental interest is the total transmis-
ferrite perform a Larmor precession about the axis of thesion coefficient, namely,
magnetic field. At the Larmor frequency the ferromagnetic

resonance is excited giving rise to a strong microwave ab- T=> T Wwith T,= réab|2. (2
sorption. This is, of coarse, unwanted. Moving to frequencies ae2
located at the tails of the ferromagnetic resonance, the mi- bel

crowaves are partially reflected and acquire a phase shift,, absorption at eadi,, channel can be quantifi¢83] by
depending on the sign of the propagation. The ferrite cyllnT¢:1_|<S¢¢>|z, where(---) indicates an ensemble average

der has thus a similar effect on the photons as an Aharonov- . . .
Bohm flux line in a corresponding electron system. This Cor_(descnbed belov A given ¢ channel is weakly couplegbr

respondence has already been explored to study persiste[r){owdes litle absorptionif I',<1, whereas ifl',=1 the

|
currents using a microwave analf@]. cavity is perfectly coupled to the channgland the corre-
This method to break time-reversal symmetry has an ob

sponding absorption is maximal. We take the linfitg> 1
vious and unavoidable limitation: We have to move away(maﬂylgo§1§lble absorpltlonhphanr)adtsldl“(é{l, \r/]vhllebkeept
from the ferromagnetic resonance frequency to avoid strong 9 V¢! 4~ constant. In this way we mimic the absorption

- rocesses occurring over the entire cavity surface, expressing
absorption, but we also have to stay close enough to obser Bei . . !
- . their strength by a single parametér{33]. This modeling,
a significant phase-breaking effect. In the present experi- . : ; . ; . .
. . , T~ used in the numerical simulations described below, is equiva-
ment, the optimal frequencies occur on a quite narrow inter; . . ; ; i
. . . ~'lent to adding an imaginary part to the energy in 8atrix
val between 13.5 and 14.0 GHz, but still the typical line- 34], a standard way to account for a fin@evalue[13]
widths are about half an order of magnitude larger than in thé X Y '

absence of the ferrite inserts. The Appendix gives a quanti- We obtain the distribution®,(T) by numerical simula-

tative description of the phase-breaking mechanism due tgon. To that end, we employ the Hamiltonian approach to the

the ferrite cylinders. Specific properties of the employed fer—Stat'St'CaIS matrix, namely,

rite, which are useful for the understanding of the experimen- Se) =1 - 27WT (e = H + i WWH) W, (3)
tal data, are also discussed.
whereH is the matrix of dimensioM X M that describes the
resonant statedd is taken as a member of the Gaussian
orthogonal(unitary) ensemble for thébroken time-reversal
There are two standard statistical theories that describymmetric case. The matriw of dimensionM X (N;+N,
universal transmission fluctuations of ballistic systems. One-N,) contains the channel-resonance coupling matrix ele-
is the Smatrix information-theoretical theor{32], tailor- ments ance is the energy. ThisSmatrix parametrization is
made to calculate transmission distributions. The otheentirely equivalent to th&-matrix formulation recently used
method, where the statistic8Imatrix is obtained by model- by Kogan and collaboratof®1]. Since theH matrix is sta-
ing the scattering region by a stochastic Hamiltor{iah is tistically invariant under orthogonal3=1) or unitary (8
suited to the computation of energy and parametric transmis=2) transformations, the statistical properties $fdepend
sion correlation functions. Both approaches were proven tenly on the mean resonance spacingletermined byH, and
be strictly equivalent in certain limitg4]. Complementing the traces ofN'W. Maximizing the average transmission, or
this result, there is numerical evidence supporting that thessuming perfect coupling, is equivalent to settinVii)
equivalence is generdf]. Here we use both methods: Our =A/ 7 [35]. The Hamiltonian approach can be used, in prin-
analytical resultsmainly for variancep are obtained from ciple, to study any numbeX of open channels. We find it
the information-theoretical approach, whereas the numericajonvenient to express our results in term&efe/A, i.e., all
simulations(for the full distributiong are based on the sto- energiesE are given in units of the mean resonance spacing
chastic Hamiltonian one. A. Later the experimental data will be scaled likewise. The
We model the transmission flux deficit due to absorptionin the experiments has been estimated from the Weyl formula
by a set ofN,, nontransmitting channels coupled to the cav-for closed resonators, including the surface term.
ity. We considerN; and N, propagating modes at the en-  Some words about our model are in order. One can de-
trance and the exit waveguides, respectively. The resultingcribe the transmission in terms of trajectories scattered by
scattering process is described by the block structGreth-  the cavity in a semiclassical picture. In this scenario, the

lll. STATISTICAL THEORY

trix time-reversal symmetry is broken as the actions of the tra-
jectories acquire a sufficiently large additional time-reversal
Su Sz S S Sig symmetry(TRS) breaking contribution due to the ferrite cyl-
S={Sun Sn Sy |= Sy |- (1) inders. For full TRS breaking, the phase shifthanges in

action, measured in units & should be distributed between
o ) 0 and 2r. For that matter it is not important whether this is
Here the set of indice§l},{2} label theN;,N, propagating  chieved continuously, as for an electron in a magnetic field,
modes at the waveguides, while the $¢ labels theN, o giscontinuously, as in our case. Actually, our theoretical
absorption channels. Transmission and reflection measUrghodeling uses a different, but equivalent, picture. It assumes

ments, necessarily taken at the waveguides, access direcdyHamiltonian with broken TRS. The magnitude of the TRS
only the S'matrix elements. breaking matrix elements depends on the resonance “wave

Spr Sp2 Sy Spr Spz Sy
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function” amplitudes inside the ferrite, where a local time-
reversal symmetry breaking potential acts. Wave functions
corresponding to distinct states of a chaotic system are un-
correlated, providing a heuristic justification for the model.
Similar arguments apply to the absorption that occurs at the
walls of the resonator. Our model assumes that the different
absorption processes can, in principle, be labeled in terms of
its asymptotic radiation properties, defining the absorption
channels. Although of little use for a detailed microscopic
calculation, this description in terms of effective channels in
Hilbert space is very practical for our statistical analysis.
The numerical simulations are straightforward. For every
realization ofH we invert the propagator and compB¢) = J557 N NN
for energy valules plose to the center of the b0, where . 00 o3 \i.o 0.6;“ - \,_1__:0_ 15 )
the level density is approximately constant. The dimension T T
of H is fixed asM =100 to 200, depending on the number of
channelsN. The choice oM represents the compromise be-  FIG. 3. Transmission distributioR(T) for asymmetric chaotic
tween having a wide energy window for the statistiesge ce_1vities withN:_l and 2 open channels, both cases \A(/Bh 0) and
M) and fast computatiofsmall M). For each value of we Wltho_ut (B#0) time-reversal fsymmetry. We consider different ab-
obtain very good statistics with $01C realizations. sorption parameters: O (solid), 0.25 (dashegi 1 (dotted, 2.5
The full distribution of the transmission energy deriva- (dash-dotte] and 5(dash-dot-dotted

tives,rﬁﬁ(dT/dE), is obtained by numerical simulations. This

is a simple extension of the numerical procedure describe
above. We computdS/dE directly from

Hal (N=1) or a convolution of exponentialdN=2) as the
absorption strength increases. FAN=1 our simulations are
in excellent agreemeltivithin the statistical error and almost

ds . . _ indistinguishable in the scale of the graphith the analyti-
d_EZZT”WT(E_H HimWW) AW, (4) cal expression obtained in Refil5,34. The comparison
between our simulations and the analytical distributions for
at the same time aS(E) is calculated. the caseN=2 without absorption is also excellent. This con-
We also analyze the fluctuations of the transmission coefsistency test makes us confident in the numerical procedure.
ficient energy derivativedT/dE. We use the information- For strong absorptioRi > 1, we find strong numerical evi-

theoretical approach to analytically compute moments ofience that the distribution of individual channel-channel
dT/dE. For that purpose we expredS/dE in terms of theS  transmission energy derivativesT,,/dE, is exponential,
matrix itself and a symmetrized form of the Wigner-Smith namely,

>, (6)

time-delay matrixQg [36], namely,
dT,p
where\ ; depends or’, but not the channel indicesandb.

dE

Asymmetric cavities

dT|®

dE

L . . . ~ A
The presented formalism is readily suited for asymmetric Ps(dT/dE) = —£ exp(— Ng
chaotic cavities, since to this point only stochasticity and 96

orthogonal(time-reversal or unitary (broken time-reversal 2

ces, the computation of(dT,,/dE)?) is possible[37]. We
Note that the only parameters of the statistical theory ariticant in our billiards. Figure 4 presents results for typical
symmetry are assumed. Additional symmetries require spe- + 6)\2 = t19%g| =

dS_ iy 1/2 ~ A
£ 7S QeS” (5) PA(dTydE) = 2 expl ~ A
Thanks to the well known statistical properties@f matri-
note that Eq(5) is strictly valid only when all channels are Furthermore, in this regime we find that thi,,/dE for
|Qeally coupled to_the scatterer. That_J'ls,=1 wherec can be different pairs of channels are uncorrelaf@¥]. We con-
E'ther a waveguide or an absorbing channel. Herce, e that either this distribution is insensitive to dynamical
=NyI'y is an integer number. channel-channel correlations, or such correlations are insig-
the local mean resonance spacigthe number of channels o, herimental values. For independeiit,,/dE, the distribu-
N, and the absorption paramellérln what foI.Iows We ana-  tjon of dT/dE for N=2 is easily obtained from Ed6) and
lyze the cases of asymmetric and symmetric cavities. reads
dT
— ] x (a3
dE‘) ( p
dT
cial Smatrix parametrizations. dE dE
Figure 3 showd$(T) for theN=1 and 2 cases for various It remains to relate\g to I'. This is done by computing
values of the absorptioRi. One can nicely observe how the {(dT,,/dE)?). The latter can be analytically calculated using
distributions for zero absorptidri0] evolve to an exponen- the energy derivative of th® matrix, Eq.(5), and read$37]

+ 15) . (7)

016223-4



UNIVERSAL TRANSPORT PROPERTIES OF OPEN PHYSICAL REVIEW E 71, 016223(2009

N=1 N=2
35
30 10 = B=0
2
S L s
B T 3 i s ~
10 ok ¢ 5
5 - . I 5
- ol -,
50 20
= B0
= T : L N
s 10 I S
< 0 - <, !
10 IS F Y
4r'_ 1k 0 _,—: = - ] '. ) g ! N
005 000 005 01 00 01 e S RO
dT/dE dTIdE 0.0 0.5 1.0 00 05 10 15 20
T T

FIG. 4. Distributions ofdT/dE for asymmetric cavities. Here ) ) o o
and in all subsequent figures the energy is expressed in units of the FIG. 5. Symmetric cavity transmission distributioRéT) for the
mean level spacind, namely,E=z/A. For N=1 the distributions ~©ne- and two-channel cases. f&x0 we considei’=0, 0.5, 2, 2.5,

agree with Eq(6) (dotted ling, while for N=2 they follow Eq.(7) and 10, corresponding to the solid, dashed, dotted, dash-dotted, and
(dotted line. dash-dot-dotted lines, respectively. For the case of broken time-

reversal symmetnB # 0, the same symbols refer 6=0, 0.25, 1,

<(dTab>2>_ 872  P+a-2+42-p) 25, and 5.

- ’ (8)
dE a(a+1)?a®+a=2-42-p) We numerically generate(T) andEB(dT/dE) using the
wherea=N;+N,+I". Recalling that((dTab/dE)2>:2/)\z we  Hamiltonian approach to th® matrix, Eqs.(3) and(5). Now
find A as a function of". As pointed out below Eq5), the  two statistically independent matric8sandS, are required.
above formula is valid only for integer valuesibf Through- ~ Here we chose the dimension bff to be M=50. For each
out this study we interpolate our formulas for the variancesvalue ofI" we ran 10 realizations. We checked the quality of

of dT/dE for noninteger values of . our simulations with the analytical results avaliable for
In Fig. 4 we compare the approximatid'ﬁﬁ(dT/dE) =0 and verified an excellent agreement within the statistical
" EITor.

where\; is calculated as described above, with a direct nu-

merical simulation. The agreement is rather good. Figure 5 contrast$,(T) obtained analytically for zero

absorption[29] with our numerical simulations for different
values ofI'. Our analysis is restricted thl=1 and 2, as
before. We observe that with increasihighe fingerprints of
The influence of absorption on the transmission fluctuathe reflection symmetry fade away, and the distributions be-
tions is even more pronounced in billiards with reflectioncome quite similar to those of asymmetric cavities.
symmetry. In the absence of absorption the transmission dis- As in the asymmetric case, for the strong absorption re-
tributions for reflection-symmetric cavities were already ana-gime,I'> 1, our numerical simulations strongly suggest that
lytically computed. The most salient features are the follow-the distribution of the energy derivative of individual
ing. When time-reversal symmetry is preserved, the theorghannel-channel transmission coefficieRg(dT,,/dE) is
predicts that the transmission distributiBfil) for reflection- exponential. However, in distinction from the asymmetric
symmetric cavities remains invariant whanis substituted  cage, here the exponential law depends on the channels: The
by 1-T [38]. On the other hand, for broken time-reversal refiection symmetry(see Fig. 1 makes the channeld,4)
symmetry,P(T) coincides with the one for thasymmetric  anq(2,3) indistinguishable. Accordingly, we find that the “di-

Symmetric cavities

case, but withT replaced by 1 [29]. o o agonal” coefficientsT,, and T,; denoted bys?,, and the
To account for the reflection symmetry, it is sufficient to “off-diagonal” onesT,, and T3, denoted by?2, have differ-
consider theS matrix with the block structurg3g] ent variance. The second moment of the diagdid)/dE is

. [%(swsz) OREY o
2(8-9) (&+9) | L
where S; and S, are unitary (and symmetric forg=1) <(%’) >= 4’ [a’(a/ ~D(5-6)
Nr/2X Ng/2 matrices withNy=2N+N,. Both S and S, dE (a/ -2)a'*(a’ + 1) a' +3
have the structure given by E({). . (@'2+a' +2)(2 _,3)}

The transmission coefficient now reads Vi1 (11

1 N N
T=7 2 (Sl (Sl = X 0w (10)

ab=1 ab=1 whereas the off diagonal is
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N=1 N=2 o4 — T — T — T — T T 1

0.3

P(dT/dE)
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8 B -, 4
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= oz
& I [ :
2 ¢ ; 0.0 PR U R EEPR R ST R
y ‘-_i 11 12 13 14 15 16 17 18
0 02 00 02 Frequency v [GHz]

dT/dE

FIG. 7. Mean transmissiofT) for the N=2 case foB=0 (solid
FIG. 6. Transmission energy derivative distributions for the|ine) and 0.470 T(dotted lind. The Larmor resonance frequency is
symmetric chaotic cavities. The points represent the results of thg,=2+x 14.86 GHz.
simulations fol'=18(22) for B=0 (B+ 0) for N=1;T'=14(18) for
B=0 (B+ 0) for N=2. The dotted lines give the approximatict8  shown [44]. A recent experimental microwave stud5]

and(13). ForN=1 we present the diagonal case. claims to circumvent the ergodic hypothesis by placing a
perturbation(absorber at different cavity positions, hence
do®.\2 272’2+ o +2) generating different realizations of the scattering system.
( ab) =— Y, 5 However, the position of the perturbation can be regarded as
dE (@' =2)a"(a" + 1)*(a’ +3) a running variable. This means that Rpf5] implicitly as-
a +2 sumes that there are no spectral correlations as the absorber
X[(Z —B)a, 1 +4(B- 1)} (12)  is moved. It was shown in Ref46] that such correlations

exist as long as the range of the perturbation potential is
Here,a'=B(N+I'/2). small compared to the wavelength. In case this assumption is
ForI'>1, based on the numerical simulations, we assuméoo strong, in practice, ergodicity justifies the statistical
that Pg(do,,/ dE) is exponential and that for different pair of analysis either way. o o .
channelsa and b the do,,/dE are uncorrelated. We then The experimental transmission coefficients were obtained

equateufg:2/<(dcrgb/dE)2> and V2ﬁ=2/((da'gb/dE)2) to write  PY superimposir)g 100 different spectra measured. for billiard
lengthsb (see Fig. 1 In the studied frequency regime there

dT > is only a single propagating mode in each of the waveguides.

2 2
~ Cmpvg| (101 v
Ps(dT/dE) = —‘8—16 K_ + _> ex;{— 2 Hence, with every waveguide we associate a single scatter-

o 2 |dE ing channel. For thé&l=1 case all measurements for the dif-
. (i _i)(i 1.1, ‘d_T > ferent combinations of entrance and exit waveguides were
ay a)\ay ay pg |dE superimposed. The transmission for tRe2 case was ob-
- tained by combining the results from &lE1 measurements,
XeX[<_ IU’,B - ‘ >:| , (13) nam.ely,T:T13+T14+T23+T24. o )
dE Figure 7 shows the mean transmissidi=2 case with

Where =+ /2, a=us-14l2. Figure 6 compares the and without applied' 'extt‘a‘r‘na}l magnetic field. When related to
- ] ) ) ) experimental quantitie; --) indicate running averages. The
approximationP(dT/dE) with our numerical simulations. grong absorption due to the Larmor resonance is clearly
We chose parameters realistic to our experiment. The agreggen. In the Appendix we discuss why the phase-breaking
ment is quite good. Deviations between the approximationyffect is expected to be best observed in the tails of the
(13) and the numerical simulations are of orded™1/ Larmor resonance. Figure 8 illustrates this very nicely. It
shows the scaled transmission distribut®(r/(T)) for the
asymmetric billiard in three different frequency windows
IV. STATISTICAL ANALYRSL:SSUOL';STHE EXPERIMENTAL both with and without applied external magnetic field. It is
only in the frequency interval from 13.55 to 13.85 GHz that

The statistical analysis of our experiment is based on twd>(T/(T)) changes with magnetic field. We stress that this is
central hypotheses. First, as standard, we assume that th#ferent from just an absorption effect. In the frequency
transmission fluctuations of a chaotic system are the same agndow around 14.45 GHz, where the absorption is stron-
those predicted by random-matrix thedBMT) [4]. Second, gest, the normalized distributions with and without magnetic
we employ an ergodic hypothesis to justify that ensembldield are basically the samghe only difference is in the
averages are equivalent to running averages, that is, averageean transmission. We identify the changePiT/(T)) with
over the energyfrequency and/or shape parameters. This the expected phase-breaking effect and assume that the ap-
requires RMT to be ergodi§42,43, which was recently plied magnetic field is sufficient for the ferrite cylinders to
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N=1 N=2 5o N=1 1355-1385GHz o N=2 13.55-13.85 GHz
— 1.5 j j j
B=0mT B=0mT
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& 4
0.5 4
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0.0kF ,
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A - B=475mT
v -0 g or =25
N =
= o
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0.0 120/
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FIG. 9. Transmission distributions for the asymmetric cavity.
000L o . . 0.0l : The histograms correspond to data taken within the indicated fre-
66 1.0 20 30 00 1.0 2.0 quency window. The dotted lines stand for the random-matrix simu-

T/<T> T/<T> lations, withI" as a fitting parameter.

FIG. 8. Transmission distribution for thbl=1 (left) and 2 . . . . .
(right) channel cases for three different frequency windows of width We work with a single asymmetric CaV'Fy' b,Ut use differ-
8v=0.3 GHz centered at, (indicated in the figure The histo- entT" values forN=1 and 2. The reason is simple: Fr
grams correspond t8=0 (solid line) and 0.470 T(dotted line. =2 we consider the contributions from all antennas to the

transmission, whereas fod=1 two antennas act as addi-

fully break time-reversal symmetry. Similar observationstlonal absorption channels. This gives rise to a simple rela-

were made for the symmetric billiard. tion, name]y,l“m 1)_F(N.2)+2' o .

Before we present our statistical analysis, it remains to To obtain the expenmental distribution of the transmis-
discuss the coupling of the waveguides to the cavity. For tha#ion energy derivativeP(dT/dE) we introduce E=/A,
purpose we measured the transmission through twahich measures the frequeneyin units of the mean reso-
waveguides facing each other directly. In the whole applied’ance spacingd given by the Weyl formula. Figure 10
frequency range the total transmission was unity, with arfhows a comparlson between theoretical and experimental
experimental uncertainty below 5%, showing that the antesults forP(dT/dE) Note that we take the saniéas for
tenna coupling is perfect. There are, however, reflections oP(T). The signatures of the channel number, and the influ-
about 10% in amplitude from the open ends of theence of time-reversal symmetry breaking are clearly seen.
waveguides, where they are attached to the billiard. Smalve checked that the increase in absorption when switching
deviations from ideal coupling are also consistent, for theon the magnetic field, without switching to the unitary en-
frequencies we use, with Ref27]. Since the absorption is semble as well, is not sufficient to reproduce the data. Inac-
strong in the present experiment, and an imperfect couplinguracies in the assessment of the mean level resonance from
can be compensated for to a large extent by a rescaled ab-

sorption constant, we decided not to explicitly account for N=1 13.55- 13.85 GHz N=2 13.55-13.85 GHz
coupling corrections. In summary, throughout the forthcom- 45 B=0mT B=0mT
ing analysis we assume perfect coupling between the caV|t)« y=18 15¢ y=16
and the waveguides. S 30 10

. .. L=
For the sake of clarity, we present the statistical analysis3
of the asymmetric and the symmetric cavities separately.

Asymmetric cavity distributions 45 = 2 ;475 — Y A B 221'7 ST

Figure 9 compares the experimental transmission distribu% y=27 15 iy y=25
tions in the “phase-breaking” frequency window with the § 30 10l ‘
statistical theory. The absorption paramete(see Sec. Il < s
was adjusted to give the best fit of the theoretidal to the 5
experiment. Note that in the frequency scale where the uni- ¢ o "*-~--O 5 o0 O 0o 0T o2
versal transmission fluctuations occur the mean transmissiol ‘ CdTIdE ) T andE '
is a smooth function. It also does not show noticeable
changes within the “phase-breaking” winddaee Fig. 7. FIG. 10. Distribution of the energy derivative of the transmis-
The agreement between experiment and theoryPf@ is  sion for the asymmetric cavity’(dT/dE). The dotted lines corre-
excellent, except foN=2 with B+ 0 [47]. spond to the theoretical distributions.
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5 12 N=1 13.55-13.85 GHz N= 2‘ 13.55-13.85 GHz
4+ B=0mT 3  B=0mT
8. vy=18 Y= 14
I S 2 .
’ <
= 1 4
o 2
24| :
B=475mT
0 8 y=22
S
Q.
4
FIG. 11. Normalized joint distribution F(T,dT/dE) 0.0 Y 00 02 04 06 08
=P(T,dT/dE)/[P(T)P(dT/dE)] for the asymmetric cavity folN T T

=1,B=0. A similar resuit holds fo8 #0. FIG. 13. Transmission distributior¥T) for the symmetric bil-

liard. Histograms stand for the data taken at the indicated frequency
the Weyl formula provide a possible explanation for theinterval, whereas the dotted lines correspond to the simulations. The
slight disagreement between theory and experiment. Thegbsorptionl is a fitting parameter.
Weyl formula does not account for the standing waves in the
ferrite cylinders and, thus, overestimates the mean resonance
e st Rer, W SWICh now o he statsicalanayss of e symmetri
[18] for N=1 andI’=0. Remarkably, it was found that albeit cavity transmission fluctuations.
T and dT/dE are correlated, the rescaled quantity .Fllgure 1?.) shows the experimental shoR) for trans-
(dT/dE),es= (dT/dE)/|T(L=T) and T are not. We checked m|squns V\#thln_13.5& v=<13.85 GHz, where the pfhase—h
if this finding holds in our experiment, despite absorption.b[)ea Ing effect is e>d(jE)e_cter:1 t(; be fstropghest.hAs be orer; the
Figure 11 shows the “normalized” joint probability a sorptlon parametdr is t e est fit of the theory to the

experiment. Here, for all studied cases a nearly perfect agree-
ment is found. Now N9 =TN=2+4 This is due the reflec-

Symmetric cavity distributions

P(T,dT/dE) _ tion symmetry. . S
dT ——— _— for P(T)P(dT/dE) # O, Figure 14 shows the experimental distributid®&l T/dE)
F<T'd_E = P(T)P(dT/dE) for the symmetric case. The signatures of the channel num-
0 for P(T)P(dT/dE) =0 ber and the influence of breaking time-reversal symmetry are

clearly seen. For all cases of the symmetric billiard the the-
(14) oretical curves are plotted as well. We observe that the ex-
p
perimental distributions verify the overall trends of the the-
. . . . _ oretical predictions. In particular, the characteristic cusp at
in a three-dimensional representation fdF1 andB=0. £_q'g nicely reproduced foN=1. Similar to the asymmet-

Clear correlations are observed. In contrast, Fig. 12 show : :
L ’ ¢ case, the agreement between experiment and theory is not
F[T,(dT/dE)esd- Here the distribution becomes flat, except as good as for the transmission distribution.

for a couple of bins with few counts. Unfortunately we do
not have enough statistics to make a more reliable determi-

i Y S . N=1 13.55-13.85GHz N=2 13.55-13.85GHz
nation of the joint distributior. A similar result, not shown ' T R owT ' ' '
=uUm -
here, holds for thd+ 0 case. 15l N ] B=0mT
Q y=18 6 y=14
=
. S 10
Q
5t
A 4
0 '
g3t . B=475mT
0 ~ 15} 6l oy = 18
— 4t Lu Y
o 2 S
2. A
v 1 A 3
5t
0 0 0
01 00 01 02 0.15 000 0.5 030
dT/dE dT/dE

FIG. 14. Distribution of the energy derivative of the transmis-
FIG. 12. Same as in Fig. 11, but witdT/dE replaced by sion for the symmetric cavity. The dotted lines corresponds to the
(dT/dE)es=(dT/dE)/{T(1-T). theoretical distributions obtained from random-matrix theory.
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FIG. 15. Normalized joint distribution F(T,dT/dE) FIG. 17. Plane wave reflected by the surface of a ferrite slab.

:P(T,dT/dE)/[P(TfE’(dT/dE)] for the symmetric cavity foN=1,

B=0. A similar result holds foB# 0. ideal coupling is assumed. In the frequency range studied

here, the working hypothesis of nearly perfect coupling is

In analogy to the case of asymmetric cavities, we invessupported by Ref.27]. In general, however, it turns out that
tigate if the rescaled quantity (dT/dE).sc  without measuring thés matrix (with phasesit is hard to
=(dT/dE)/{T(1-T) is independent ofl. Figure 15 shows disentangle direct reflection at the cavity entratiogerfect
the normalized joint probability(T,dT/dE), defined as in coupling from absorption. From the experimental side, it
Eg. (14), in a three-dimensional representation fbr1 and  would be desirable to have a better handle on absorption.
B=0. A clear correlation is manifest. For comparison, Fig. 16 Microwave systems are usually time-reversal invariant,
shows the corresponding histogram fB(T,(dT/dE)es). and as we have seen it is not trivial to break this symmetry.
The scaled= becomes flat, except for a few bins with low At the same time we increase the magnetic field, turning on
counting. This indicates that the rescaled joint probabilitythe phase-breaking mechanism, absorption also increases.
distributionF is very well described as a product®(T) and  Unfortunately, both effects are inextricable. This is why it is

’E[(dT/dE)reS(;l- We conclude that if there are correlations beyond our present experimental capability to quantitatively

betweerT and (dT/dE)..., they are very small. We observe investigate the transmission fluctuations along the crossover
similar results. not shé?;/(;l he?/e for tlﬁgqﬁ 0 caée regime between preserved and broken time-reversal invari-

ance. Actually, to compare theory with experimental results
we assume that the transmission datéBat0.470 mT and

V. CONCLUSIONS 13.55<v<13.85 GHz are far beyond the crossover regime.
We hope that the present work will trigger additional the-

This work shows that microwaves are ideally suited 10, etical effort in the mentioned directions.

experimentally verify the theory of universal transmission
fluctuations through chaotic cavities. The results presented in
the present paper would have been hardly accessible by any

other method. C. W. J. Beenakker is thanked for numerous discussions at
We observe a nice overall agreement between our experitferent stages of this work. We also thank P. A. Mello for

mental data and the random-matrix results. However, thg,ggesting the symmetric cavities measurements. The ex-

comparison between theory and microwave experiment igeriments were supported by the Deutsche Forschungsge-

limited by the following issues. _ meinschaft. M.M.M. was supported by CLAF-CNF8razil)
In experiments, the coupling between waveguides and thgnd C.H.L. by CNP¢Brazil).

cavity is usually not ideal, whereas in most theoretical works
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APPENDIX: PHASE-BREAKING PROPERTIES

2,5 OF THE FERRITE

2.0 This Appendix is devoted to the discussion of the ferro-
g 5 magnetic resonance and the phase-breaking mechanism. For
> 1= that purpose we first quickly present some elements of the
= 1.0 well-established theory of microwave ferrites; see for in-
v g stance, Ref[39].

0'0 For the sake of simplicity, we first restrict ourselves to the

situation of an incoming plane wave reflected by the surface
of an semi-infinite ferrite medium. We assume that incoming,
reflected, and refracted waves propagate inxhelane and
are polarized along the direction, and that there is an ex-
FIG. 16. Same as in Fig. 15, but withT/dE replaced by ternally applied static magnetic field in ttedirection, as
(dT/dE)es=(dT/dE)/\T(1-T). shown in Fig. 17. We ask for the phase acquired due to the
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reflection on the ferrite. ' ' '

To answer this question we need to solve Maxwell's equa-
tions. For this geometry and single-frequency electromag-
netic fields, like our microwaves, this is a simple task. The
ferrite properties come into play via the constitutive relations
D=¢yeE and B=puouH; more specifically through the per-
meability u, which is a tensor with the form

\Eg/E)|

1+x, —ix
w=l+x=| iy Ll+x - (A1)
1+x

\E,/E)\

with

W) W\ (:)Q)M ~ .
Xi:—m, w=w+i\. (A2)

Xr = ~o
wf—wz

........... r
<o LR AT AR

Herew, =-yHy andwy,=yM, are the precession angular fre- — a=0 e
guencies about the external field, and the equilibrium 8or 4
magnetizatiorM, respectivelyu, is the static susceptibility.

Here\ is the rate that characterizes the decay of the magne-
tization toward its thermal equilibrium due to spin-spin and 4.0~
spin-lattice interactions within the ferrite. More details can 20k
be found, for instance, in Chap. 2.2.3 of Ref0].

6.0

¢reﬂ(a)

We solve the proposed problem using for the electric field 0’010 12 14 16 18
the ansatZ(r)=E(r)e,, where Frequency v [GHz]
ik
E(r) = ETe_ ™ . x<0, (A3) FIG. 18. Reflection, transmission, and phase shift for a ferrite
E kT +Ege R, x>0, slab (My=130 mT, e=15, A=0.1 GH2 of thickness|=1 mm at

. . . Bo=uoHo=470 mT for diff t incid I
with  k,=ko(-cosa,sina,0), kr=ky(cosa,sina,0), kg 0~ oo m for cliiierent Incldence angles

=k(-cosg,sinB,0) (see Fig. 17.
The derivation of the amplitudes, Eg, andEy is similar Er - 4eln (A8)

to that of Fresnel's formulésee, for instancd41]). Since an E, (1 +en)2eI — (1 - ¢/n)2ekn)

explicit calculation for ferrites is performed in Ref31],

only the results will be given. Using the continuity®f, D,,  and

B, andH, on the boundary, one writes

1-éIn?

En . .
Er=E+Eg and ksing=kysina (A4) E 2 sin knl(l T eln)2eMIT _ (1 — ¢fn) 2Ll

which is just Snell's law. For the relative amplitude of the (A9)
reflected part we obtain

In contrast to Eq(A5), Er is no longer the amplitude of the

Eg _ (n’/e)cosa+issina— \n’ - sirf a transmitted wave propagating inside the ferrite. HEfeis

Ei  (nYe)cosa—idsina+\n?-sir a (AS) the amplitude of the wave that crossed the ferrite slab and
emerged at the other side. The explicit formula éo# 0 is
where lengthy and is not presented here.
2 The phase breaking becomes clearly manifest by writing

o (o + o) o (A6)  Ed.(A9) as

o0+ oy) - &

and Er = ‘5? g Prei(@) (A10)
E |E
X dwy A7 _ _ N
TTirx ooty - (A7) whereg,q(a) is the phase acquired due to reflection. Figure
r

18 shows the modulus of transmissid@/E,| and reflection
Note that there is a term depending on the sigaofe., on  |Er/E,| as well as the phase shift for different incidence
the direction of the incident wave. This term is responsibleangles and=1 mm, the thickness of our ferrite cylinders.
for the phase-breaking effect. The curves are calculated using the ferrite paramedtss

The above formulas have to be modified when dealingcaption of Fig. 18 given by the supplier. We find a resonance
with a ferrite of finite width. For a slab of thickne$sand  angular frequency oOfwg=+w (w +wy)=27X 14.86 GHz.
a=0 we have This resonance corresponds to the dominant structure ob-
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FIG. 19. DifferenceA ¢= (@) — dren(—a) of phase shifts ob-
served between an incoming wave and its time-reversed equivalent.

served in Fig. 18. The additional substructures are due to
standing waves inside the ferrite.

To illustrate the phase-breaking effect of the ferrite, in
Fig. 19 we show the phase differencA¢=d (@)
- ¢refi(—a) between the incoming and the time-reversed
wave. We see that the effect is maximal at the resonance
frequency, and vanishes as one moves off resonance. Unfor-
tunately, the absorption is maximal at the resonance too.
These are the quantitative observations in support of the dis-
cussion presented in Sec. Il.

Finally, to experimentally check the properties of the fer-  F|G. 20. Experimental reflection for a ferrite slab of thickness
rites, we place a small sheet of the material between tw=1 (a) and 2 mm(b). The dashed lines have been calculated by
waveguides facing each other. Two different thicknedses superimposing the results for two different internal magnetizations
=1 and 2 mm were used. Figure 20 shows the measure,=110 and 190 mT. The broad minimum observed |fs2 mm
reflection|Ex/E)| as a function ofv. The small oscillations close to 13 GHz is due to a standing wave within the ferrite. For
superimposing the dominant resonance structures correspoiwll mm the corresponding minimum is at 15 GHz and overlapping
to standing waves within the waveguide and are an artifact ofvith the ferromagnetic resonance.
the experiment. Comparing the experimental results with the
calculation shown in Fig. 18, we notice that the assumption
of a single homogeneous internal magnetization is not irfion is incomplete and each Weiss domain has a different
accordance with the measurement. The dashed line is ofagnetization. It is desirable to eliminate this feature by op-
tained by superimposing the theoretical results for two dif-erating at larger magnetic fields. This is unfortunately not
ferent values of the magnetization. The overall behavior opossible since(i) a larger magnetic field implies a larger
the resonance structures becomes then in qualitative agrelearmor frequency(b) our goal to keep the equivalence with
ment with the data. The different magnetizations are due tguantum mechanics limits our study to frequencies where the
the domain structure of the ferrite. There is a critical magni-resonator is quasi-two-dimensional. In this respect the ap-
tude of external magnetic field below which the magnetizaplied field we use is about the highest possible.

Reflection |E,/E)l

O_O...I.::‘.:.:.I...-I

10 12 14 16
(b) Frequency v [GHz]
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